CHOLESTEROL ESTERS OF SHEEP WOOL UNDER THE INFLUENCE OF BIODEGRADATION BY FLEECE MICROORGANISMS
Keywords:
sheep, wool, microflora, grease, wax, internal lipids of wool, fatty acidsAbstract
Sheep fleece is an ideal environment for the growth and development of microflora, as it provides optimal conditions – heat, air, moisture, and also serves as a substrate – grease and keratin of the wool itself. In this regard, cholesterol esters of surface and internal lipids of sheep wool under the influence of biodegradation by microorganisms were studied. The research focused on damaged wool samples from Ascanian fine-wool ewes with high microbial contamination, while the control group consisted of undamaged wool with low microbial levels. Surface lipids (wax) were obtained by extraction in a Soxhlet apparatus with tetrachloromethane, free internal lipids were obtained through repeated extraction with a chloroform–methanol mixture (2:1), and bound internal lipids were obtained after prior alkaline hydrolysis. Cholesterol esters were separated in the n-heptane–toluene (8:2) system, being represented by six classes in surface lipids and four classes in internal wool lipids. It was found that the cholesterol of the wax of damaged wool is characterized by a lower content of esters of saturated acids – 36.13 % (P < 0.001), compared with 41.39 % in wool in normal condition; and a higher content of unsaturated and, especially, trienoic acids – 5.83 vs. 4.53 % (P < 0.05) and tetraenoic acids – 5.91 vs. 4.81 % (P < 0.05). The free internal lipids of damaged wool contain a lower content of saturated acid esters (P < 0.001), and a higher content of di-, tri-, and tetraenoic (P < 0.05) and other polyenoic (P < 0.001) acids. The esterified cholesterol of the bound internal lipids of defective wool contains a smaller amount of saturated esters and, especially, monounsaturated acids 15.13 % (P < 0.05), compared to 17.58 % in wool in normal condition. In contrast, in damaged wool there is a larger amount of di-, tri-, and tetraenoic (P < 0.05) and other polyenoic (P < 0.01) esters. Such changes indicate the presence of hydrolytic processes occurring in the environment of the grease and internal lipids of the wool, which ultimately can have a negative effect on the structure of wool fibers and, above all, their cuticular layer.
References
Braz P. R. L., Chaves de R. C., Lopes de N. M. S. What is the Importance of 18-methylechosanoic acid in hair care? Revista Faz Ciencia. 2023. No 25 (41). P. 89–102. DOI: 10.48075/rfc.v25i41.30594
Cao H., Xiong S. F., Dong L. L., Dai Z. T. Study on the mechanism of lipid peroxidation induced by carbonate radicals. Molecules. 2024. No 29 (5). P. 1125. DOI: 10.3390/molecules29051125
Chilakamarry С. R., Mahmood S.,·Safe S. N.,·Arifn M. A., Gupta A., Sikkandar M. Y., Begum S. S., Narasaiah B. Extraction and application of keratin from natural resources: a review. 3 Biotech. 2021. No 11. P. 220. DOI: 10.1007/s13205-021-02734-7
Coderch L., Alonso C., Garcia M. N., Perez L., Marti M. Hair lipid structure: effect of surfactants. Cosmetics. 2023. No 10 (4). P. 107. DOI: 10.3390/cosmetics10040107
Coderch L., Lorenzo di R., Mussone M., Alonso C., Marti M. The role of lipids in the process of hair ageing. Cosmetics. 2022. No 9 (6). P. 124. DOI: 10.3390/cosmetics9060124
Colditz I., Vuocolo Т., Denman S., Ingham A., Wijffels G., James P., Tellam R. Fleece rot in sheep: a review of pathogenesis, aetiology, resistance and vaccines. Animal Production Science. 2022. No 62 (3). P. 201–215. DOI: 10.1071/AN21118
Cozzolino S., Gutfreund P., Vorobiev A., Devishvili A., Greaves A., Nelson A., Yepuri N., Luengo G. S., Rutland M. W. Mimicking the hair surface for neutron reflectometry. Soft Matter. 2024. No 20 (38). P. 7634–7645. DOI: 10.1039/d4sm00784k
Das D., Das S. Wool structure and morphology. In: Seiko, J., Sabu, T. (eds). Wool fiber reinforced polymer composites. Elsevier Ltd, Amsterdam, Netherlands, 2022. 13–32 pp. DOI: 10.1016/B978-0-12-824056-4.00013-3
Denman S., Tellam R., Vuocolo T., Ingham A., Wijffels G., James P., Colditz I. Fleece rot and dermatophilosis (lumpy wool) in sheep: opportunities and challenges for new vaccines. Animal Production Science. 2022. No 62 (4). P. 301–320. DOI: 10.1071/AN21118
El–Fiky A. F., Khalil E. M., Mowafi S., Zaki R. A., El–Sayed H. A. Novel approach towards removal of lipid barrier from wool fibers’ surface using thermophilic lipase. Journal of Natural Fibers. 2021. No 1 (14). P. 9471–9485. DOI: 10.1080/15440478.2021.1982835
Ghimis S. B., Mirt A. L., Vlaicu A., Zaharia E., Bomboş M. M., Vasilievici G. Impregnated sheep wool fibers with an antimicrobial effect. Chemistry Proceedings. 2023. No 13 (1). DOI: 10.3390/chemproc2023013001
Harmsen P. Biological degradation of textiles and the relevance to textile recycling. Netherlands: Wageningen Food & Biobased Research, 2021. 21p.
Havryliak V. V., Tkachuk V. M. Fatty acid composition of structural lipids of normal and abnormal wool fibres. The Ukrainian Biochemical Journal. 2012. No 84 (5), P. 106–111.
Inostroza K., Larama G., Bravo S., Diaz M., Sepulveda N. Utilization of wool integral lipids to determine milk fat content in suffolk down ewes. Applied Sciences. 2022. No 12 (3). P. 1046. DOI: 10.3390/app12031046
Inostroza K., Larama G., Parra de la M. D. M., Bravo S., Rodriguez R, Guerrero A., Cancino-Baier D. Saturated fatty acids in wool as markers related to intramuscular fat content in lambs. Animals. 2024. No 14 (19). P. 2822. DOI: 10.3390/ani14192822
Johnson H., Norman T., Adler B. L., Yu J. D. Lanolin: the 2023 American contact dermatitis society allergen of the year. Cutis. 2023. No 112 (2). P. 78–81. DOI: 10.12788/cutis.0825
Kaneta D., Goto M., Hagihara M., Leproux P., Couderc V., Egawa M., Kano H. Visualizing intra-medulla lipids in human hair using ultra-multiplex CARS, SHG, and THG microscopy. Analyst. 2021. No 146. P. 1163–1168. DOI: 10.1039/D0AN01880E
Lis K. Hypersensitivity to lanolin: an old–new problem. Life. 2024. No 14 (12). P. 1553. DOI: 10.3390/life14121553
Liu Y., Liu J., Xiao J. Enzymatic crosslinking of amino acids improves the repair effect of keratin on hair fibre. Polymers (Basel). 2023. No 15 (9). P. 2210. DOI: 10.3390/polym15092210
Meng X., Nan Q., Zeng Q., Zhang J., Liu S., Tan L., Zheng Z., Wang X., Li G. Antibacterial and mothproofing wool fabrics modified by M-Arg/PHMG and ZnO. Applied Surface Science. 2025. No 680. 161341. DOI: 10.1016/j.apsusc.2024.161341
Mijaljica D., Townley J. P., Spada F., Harrison I. P. The heterogeneity and complexity of skin surface lipids in human skin health and disease. Progress in Lipid Research. 2024. No 93. 101264. DOI: 10.1016/j.plipres.2023.101264
Molik E., Zapletal P., Pustkowiak H., Kamińska D. Effect of day length on fatty acid content of sheep wool fat. Roczniki Naukowe Zootechniki. 2023. No 50 (1). P. 105–113. DOI: 10.58146/qtcw-9a30
Sanders D., Grunden A., Dunn R. R. A review of clothing microbiology: the history of clothing and the role of microbes in textiles. Biology Letters. 2021. No 17 (1). 20200700. DOI: 10.1098/rsbl.2020.0700
Sanders J. M., Coscia B. J., Fonari A., Misra M., Mileo P. G. M., Giesen D. J., Browning A. R., Halls M. D. Exploring the effects of wetting and free fatty acid deposition on an atomistic hair fiber surface model incorporating keratin-associated protein 5–1. Langmuir. 2023. No 39 (15). P. 5263–5274. DOI: 10.1021/acs.langmuir.2c03063
Sandt C., Borondics F. A new typology of human hair medullas based on lipid composition analysis by synchrotron FTIR microspectroscopy. Analyst. 2021. No 146. P. 3942–3954. DOI: 10.1039/d1an00695a
Stapai P. V., Stakhiv N. P., Tkachuk V. M., Smolianinova O. O. The relationship between structural lipids of sheep wool with its individual macrostructural components, chemical composition and physical indicators. Bìol. Tvarin. 2021. No 23 (1). P. 38–43. DOI: 10.15407/animbiol23.01.038
Szalay de S., Wertz P. W. Protective barriers provided by the epidermis. International Journal of Molecular Sciences. 2023. No 24 (4). P. 31–45. DOI: 10.3390/ijms24043145
Tkachuk V.M., Stapai P.V. Research on wool grease and lipids in sheep wool: methodological recommendations. Lviv, 2011. 24 p.
Tkachuk V. M., Stapay P. V., Ohorodnyk N. Z., Motko N. R. Internal lipids and their fatty acids composition in a sheep wool fiber under biodestruction with fleece microorganisms. The Ukrainian Biochemical Journal. 2024. No 96 (3). P. 98–108. DOI:10.15407/ubj96.03.097
Vikash V. L., Kamini N. R., Ponesakki G., Anandasadagopan S. K. Microbial disintegration of wool: An effective and sustainable approach for keratin extraction. International Journal of Biological Macromolecules. 2025. No 290. 138806. DOI: 10.1016/j.ijbiomac.2024.138806
Wertz P. W., Downing T. D. Integral lipids of human hair. Lipids. 1988. No 23 (9). P. 878–881. DOI: 10.1007/BF02536208
