STATISTICAL REGULARITIES OF THE BIOLOGICAL-SUBJECT INITIAL CONDITIONS FORMATION FOR THE SUGAR BEET HARVESTING TECHNOLOGICAL PROCESSES

Authors

  • V. Duganets Podilsky State Agrotechnical University
  • V. Pukas Podilsky State Agrotechnical University
  • P. Lub Lviv National Agrarian University
  • A. Sharybura Lviv National Agrarian University

DOI:

https://doi.org/10.31734/agroengineering2018.01.107

Keywords:

crop maturation, sugar beet, initial conditions, technological processes, timeliness, simulation model, functional parameters

Abstract

The coordinating task of the harvesting technological processes (TP) beginning and production area of sugar beet with the technical support parameters is disclosed. The solution of this problem is proposed to be performed on the basis of the statistical simulation methods. The features of sugar beet root crops maturation, which are accompanied by an increase of their mass and sugar content, are presented. It is accentuated that the growth rates of root crops mass are forming the current yield, affecting at the efficiency indicators of sugar beet harvesting (SBH) TP. For the TP modeling it is necessary to find out the data timing of the sugar beet harvest, the root crops initial state and the dependence of the mass growth in the context of the autumn period. It has been theoretically disclosed that the special regularity of mass accumulation and root crops sugar content requires timely harvesting, and also provision of minimum technological losses amounts. The statistical regularities which take into account the biological-substantive component influence on the harvesting processes efficiency indicators are distinguished. The method of collecting, systematizing and mathematical processing of meteorological stations data concerning the sugar beet root crops reaching processes is given. The using necessity of correlation-regression analysis methods and mathematical statistics methods for the processing of production observation data is indicated. The statistical laws of sugar beet root crops reaching, which form the initial knowledge base for statistical simulation modeling, are presented. Use of imitation model allows us to determine the regularities of changing the functional performance indicators of the TP SBH for different moment of sugar beet harvesting, production area and technical equipment are implemented.

References

Berezovetskyi S. A. Obgruntuvannia parametriv tekhnichnoho osnashchennia tekhnolohichnykh system zbyrannia ozymoho ripaku: avtoref. dys. ... kand. tekhn. nauk. Lviv, 2017. 21 c.

Buriak tsukrovyi. Ahrarnyi sektor Ukrainy. URL: http://agroua.net/plant/catalog/cg-7/c-22/info/cag-40/.

Buslenko N. P. Modelirovanie slozhnyih sistem. Moskva: Nauka, 1978. 351 s.

Gershgorn A. S. Elementyi teorii veroyatnostey i matematicheskoy statistiki: ucheb. posobie. Lvov, 1961. 254 s.

GOST 11.006-75 Prikladnaya statistika. Pravila proverki soglasiya opyitnogo raspredeleniya s teoreticheskim. Moskva: Izd-vo standartov, 1981. 32 s.

Hrechkosii V. D., Harkusha Yu. M. Kompleksna mekhanizatsiia vyroshchuvannia ta zbyrannia tsukrovykh buriakiv. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. 2010. Vyp. 145. S. 281–290.

DSTU 7062:2009. Buriaky tsukrovi. Zbyrannia. Pokaznyky yakosti ta metody yikh vyznachannia. [Chynnyi vid 01.01.2011]. Kyiv: Derzhspozhyvstandart Ukrainy, 2011. 12 s.

Zavalishin F. S., Matsnev M. G. Metodyi issledovaniy po mehanizatsii selskohozyaystvennogo proizvodstva. Moskva: Kolos, 1982. 226 s.

Kovalchyk Yu. I., Hovda O. I. Rozrakhunok ymovirnosti dyskretnykh staniv systemy iz chotyrma odynytsiamy zbyralnoi tekhniky. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia. 2015. № 19. S. 39–44.

Kuzminskyi R., Sokolovskyi O., Sheremeta R. Matematychna model heometrychnykh parametriv nasinyn pshenytsi. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia. 2014. № 18. S. 171–176.

Spichak V. S. Upravlinnia vyrobnycho-tekhnolohichnym ryzykom u proektakh zbyrannia tsukrovykh buriakiv: avtoref. dys. … kand. tekhn. nauk. Lviv, 2010. 23 s.

Tabashnikov A. T. Optimizatsiya uborki zernovyih i kormovyih kultur. Moskva: Agropromizdat, 1985. 159 s.

Tymochko V. O., Lub P. M., Padiuka R. I. Obgruntuvannia koefitsiienta pohodnosti dlia prohnozuvannia dobovoi produktyvnosti mashynno-traktornykh ahrehativ. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia. 2017. № 20. S. 148–154.

Ulanova E. S., Zabelin V. N. Metodyi korrelyatsionnogo i regressionnogo analiza v agrometeorologii. Leningrad: Gidrometeoizdat, 1990. 146 s.

Flys I. Problemy ta chynnyky initsializatsii innovatsiinykh proektiv i prohram rozvytku ahropromyslovykh pidpryiemstv v umovakh nevyznachenosti. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia. 2014. № 18. S. 6–10.

Shennon R. Imitatsionnoe modelirovanie sistem – iskusstvo i nauka. Moskva: Mir, 1978. 418 s.

Shpar D., Dreger D., Zaharenko A. Saharnaya svekla. Moskva: ID OOO DLV «Agrodelo», 2006. 315 s.

Heidari G., Sohrabi Y., Esmailpoor B. Influence of harvesting time on yield and yield components of sugar beet. J. Agri. Soc. Sci. 2008. Vol. 4, No. 2, Р. 69–73.

Rubinstein R. Y., Kroese D. P. Simulation and the Monte Carlo method. 2-nd edition. Wiley, 2007. 345 p.

Schildt H. C#: The Complete Reference. Osborne: The McGraw-Hill Companies, 2003. 752 p.

Published

2018-12-01

How to Cite

Duganets В., Pukas В., Lub П., & Sharybura А. (2018). STATISTICAL REGULARITIES OF THE BIOLOGICAL-SUBJECT INITIAL CONDITIONS FORMATION FOR THE SUGAR BEET HARVESTING TECHNOLOGICAL PROCESSES. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (22), 107–112. https://doi.org/10.31734/agroengineering2018.01.107

Issue

Section

TECHNOLOGICAL PROCESSES AND EFFICIENT MACHINE USE IN AGRO ENGINEERING