ПОЛІПШЕННЯ ХАРАКТЕРИСТИК ПЕРЕТВОРЮВАЧА ЕЛЕКТРОПРИВОДА В ПЕРЕХІДНИХ РЕЖИМАХ

Authors

  • A. Vidmysh Vinnytsia National Agrarian University
  • A. Stuts Vinnytsia National Agrarian University

DOI:

https://doi.org/10.31734/agroengineering2019.23.061

Keywords:

bridge converter, electric drive, DC motor control, transient mode

Abstract

Solving energy saving problems and ensuring safe modes of operation of the DC  motor by controlling the optimum mode in a pulsed electric drive.

At present, in the industry,  and especially in electric transport, electric motors with direct electric motors are used. The range of application of direct current motors  with  series excitation motors (DPZ)  is rather wide traction electric drive of rolling  stock of urban and railway transport.  This is due to the fact that the change  in  the load moment for these mechanisms  is in good agreement with the  electromechanical characteristics of the DPZ.

A significant  factor in increasing the profitability  of electric transport in general may  be  the  replacement of an existing traction drive with more modern  types.

Simulation  models  have  been developed  that allow us to investigate electromechanical  processes  in  a  serial  DC motor.

Introduction  to  the  circuit of a pulsed regulator diode, which shunts the excitation winding, reduces the rate of attenuation  of the current in this winding.

The proposed modernization, which consists in the introduction of diodes in the scheme, allows to use the mode of  electrodynamic braking during self-excitation of the electric motor.

The proposed circuit design with  the use of energy storage avoids the use of additional independent current sources and simplifies the technical implementation and reduces costs.

The introduction of additional diodes, energy storage, auxiliary and ballast resistors allow to limit the starting current and provide safe operating modes of the elements of the actuator. Also, the voltage  on the converter elements is controlled by the additional input of the control  unit and does not exceed the maximum permissible values, which ensures safe operation of all network elements.

References

Bleiz, E. S., Zymyn, A. V., & Yvanov, E. S. (1999). Slediashchye pryvody. Moskva: MHTU im. N. E. Baumana.

Borodii, V. A., & Nesterova, O. Yu. (2018). Kompensatsiia rizko-zminnoho strumu yakoria potuzhnykh synkhronnykh pryvodiv zasobamy avtomatychnoi systemy zbudzhennia iz nestandartnym alhorytmom keruvannia. Naukovi jurnal, 1, 72–80.

Vydmysh, A. A., Babii, S. M., & Petrus, V. V. (2012). Teoriia elektropryvoda: Navch. posib. Vinnytsia: VNTU.

Kazachkovskyi, N. N. (2018). Sopostavlenye zakonov chastotnoho upravlenyia na prymere preobrazovatelia chastoty ALTIVAR 21. Hirnycha elektromekhanika ta avtomatyka, 100, 69–72.

Kаzmirеnkо V. F., Leskov, A. H., & Vvedenskyi, V. A. (1993). Systemy slediashchykh pryvodov. Moskva: Energoatomizdat.

Kliuchev, V. Y. (1998). Teoryia elektropryvoda. Moskva: Energoatomizdat.

Solodovnykov, V. V., Konkov, V. H., Sukhanov, V. A., & Sheviakov. O. V. (1991). Mykroprotsessornye avtomatycheskye systemy regulyrovanyia. Moskva: Vyssh. shk.

Podzharenko, V. O., Driuchyn, O. O., & Vasilevskyi, O. V. (2005). Optymizatsiia impulsnoho rehuliuvannia halmuvannia dvyhuna postiinoho strumu. Visnyk Natsionalnoho Universytetu “Lvivska politekhnika”. Seriia: Avtomatyka, vymiriuvannia ta keruvannia, 530, 106–110.

Rozanov, Yu. K., & Florentsev, S. Y. (1997). Sylovaia еlektronyka v elektropryvode. Pryvodnaia tekhnyka, 5, 5–8.

Sposib halmuvannia dvyhuna postiinoho strumu ta prystrii dlia yoho realizatsii: Pat. 47111A Ukraina, MKI N02 RZ/08; opubl.17.06.02, Biul. № 6.

Sposib rehuliuvannia zbudzhennia synkhronnykh mashyn: pat. 135216 Ukraina: № 201813087; zaiavl. 29.12.2018; opubl. 25.06.2019, Biul. № 12.

Fainshtein, V. H., & Fainshtein, E. H. (1966). Mykroprotsessornye systemy upravlenyia tyrystornymy elektropryvodamy. Moskva: Energoatomizdat.

AC Induction Motor Control Using the constant V/f Principle and a Space-vector PWM Algorithm. Retrieved from www.atmel.com/products/ AVR/mc/avr495.pdf/ AVR495.

AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm. Retrieved from www.atmel.com/products/AVR/mc/ avr494.pdf/ AVR494.

Beshta, A., Aziukovskyi, O., Khudolii, E. (2018). Sober assessment of economic feasibility of renewable energy and vehicle-to-grid technologies in Ukraine. Physical y Chemical Geotechnologies: Materials of the International Scientific & Practical Conference.

Beshta, A., Balakhontsev, A., Khudolii, S. (2019). Performances of Asynchronous Motor within Variable Frequency Drive with Additional Power Source Plugged via Combined Converter (pp. 17-19). Proceedings of the IEEE 6th International Conference on Energy Smart Systems (ESS).

Diachenko, G. G., & Ouriukovskyi, O. O. (2018). Сontrol laws of electric drives as a result of an in-depth kinematic analysis of the delta robot. Naukowyi visnyk Natsionalnoho hirnychoho universytetu, 1, 106–112.

Piriienko, S., Neuburger, M., Po-Wen, Ch. et al. (2018, September). Evaluation of the Small-Scale Wind Turbine Converter’s Efficiency Built with Various Types of Semiconducting Devices. International Conference on Intelligent Energy and Power Systems (IEPS). Kharkiv.

Po-Wen, Ch., Piriienko, S., Ammann, U. et al. (2019). Influence of the Control Strategy on the Efficiency of SynRM Based Small-Scale Wind Generators. International Conference on Industrial Technology (pp. 31-37). Melbourne.

Sensorless control of Two-Phase Brushless DC Motor. Retrieved from: www.atmel.com/products/AVR/mc/avr440.pdf / AVR440.

Yalanskyi, A., & Yalanskyi, O. (2019). Shock-wave diagnostics of voids and assessment of workload of lining of mine workings based on the construction of cartograms. Retrieved from URL: https://doi.org/10.1051/e3sconf/ 201910900116

Published

2023-05-29

How to Cite

Vidmysh А., & Stuts А. (2023). ПОЛІПШЕННЯ ХАРАКТЕРИСТИК ПЕРЕТВОРЮВАЧА ЕЛЕКТРОПРИВОДА В ПЕРЕХІДНИХ РЕЖИМАХ. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (23), 61–66. https://doi.org/10.31734/agroengineering2019.23.061

Issue

Section

ELECTROTECHNICAL COMPLEXES AND SYSTEMS IN AGRO INDUSTRIAL PRODUCTION