Methodology of determining the basic parameters of all-terrain hybrid vehicles

Authors

  • L. Krainyk Lviv National Environmental University
  • A. Kikhtan Lviv National Environmental University
  • Yu. Habriiel Lviv National Environmental University
  • A. Uzhva Lviv National Environmental University

DOI:

https://doi.org/10.31734/agroengineering2023.27.027

Keywords:

vehicle, all-terrain, hybrid drive, power, transmission, range, drive schemes

Abstract

The hybrid drive is becoming increasingly popular and is now being used in most of the new model generation of military vehicles (MV) in NATO countries. However, the drive schemes and basic parameters of the drive units for off-road conditions are significantly different from those used in serial hybrid drives for passenger cars and all-wheel drive general-purpose crossovers designed for paved roads.

The analysis of known MV constructions with hybrid drives confirms the dominance of the so-called serial or mix-hybrid drive schemes. There is a lack of methodology for determining the necessary basic parameters of the main units of such construction for off-road conditions in available sources of information. Therefore, it is proposed to determine the required power values of the traction electric motor and the "internal combustion engine-generator" system, the battery capacity for electric traction range, and the necessary transmission range for driving off-road and on paved roads.

The gear ratios of the main gear and the low gears of the transfer case (all-wheel drive scheme) or the gearbox (in the case of a single-drive rear engine layout) are formed to ensure the realization of the maximum power of the traction electric motor at a speed of more than 120 km/h when driving on an asphalt road and at speeds of 40-60 km/h on a typical wet all-terrain (restriction due to the conditions of extreme vibrational loads).

The studied schemes of hybrid drive off-road vehicles also allow using the "internal combustion engine-generator" system as a source of autonomous power supply, which is especially relevant in field conditions with problematic access to stationary power networks. The mixed drive scheme also provides the possibility of vehicle movement, albeit limited, in the situation of the failure of either the internal combustion engine or the traction electric motor, which is important for MV.

References

Balazs, A. (2015). Optimierte Auslegung von ottomotorischen Hybridantriebsstraengen. unter realen Fahrbedingungen. (Dissert. Dr-Ing.). RWTH Aachen.

Bazhynov, O. V., Smyrnov, O. P., Sierikov, S. A., Hnatov, A. V., & Koliesnikov, B. A. (2008). Hybrid vehicles. Kharkiv: KhNADU.

Buecherl, D. et al. (2009). Verification of the optimum hybridization factor as design parameter of hybrid electric vehicles. IEEE Vehicle Power and Propulsion Conference, VPPC09, 847-852.

Chris, Mr., Abul, Masrur, & David W., Goo. (2014). Hybridfahrzeuge. Grundlagen und Anwendungen mit Perspektiven fuer die Praxis. Wiley-VCH Verlag, Weinheim.

Czapnik, B. (2013). Methodik zur Synthese, Analyse und Bewerung von Antriebskonzepten. (Dissertation). TU Braunschweig, Shaker Verlag.

Desai, C., & Williamson, S. S. (2010). Particle swarm optimization for efficient selection of hybrid electric vehicle design parameters. IEEE: Energy Conversion Congress and Exposition (ECCE), 1623-1628.

Dong Wang Choi et al. Development of Design Tool for Hybrid Power Systems of Hybrid Electric Military Combat Vehicles. Retrieved from https://www.iri.upc.edu>VPPC 10>uploads>PDF>paper>95-69868-html.

Eghtessad, M. (2014). Optimale Antriebsstrangkonfigurationen fuer Elektrofahrzeuge. (Dissertation, Dr.-Ing.). TU Braunschweig, Shaker Verlag.

Fan, B. S.-M. (2011). Multidisciplinary Optimization of Hybrid Еlectric Vehicles: Component Sizing and Power Management Logic. (Dissertation). Univecity of Waterloo, Canada.

Fellini R. et al. (1999). Optimal Design of automotive hybrid powertrain systems. EcoDesign 99: First international Symposium. Enviromentally Conscious Design and Inverse Manufacturingg, 400-405.

Gao, W., & Mi, C. (2007). Hybrid Vehicle Design using global optimisation Algorithms. Int. Journal of Eletric and HybridVehicles, 190, 57-70.

Gollbuff, S. (2007). Design Optimization of a Plug-in Hybrid Electric Vehicle. SAE Technical Paper Series, SAE International.

Han, J. et al. (2006). Optimal design of hybrid fuell cell vehicles. Proceedings of the 4th International Conference on Fuell Cell Science. Engineering and Technology, 273-282.

Hammadi, M. et al. (2012). Multidisciplinary approach for modeling and optimization of Road Electric Vehicles in conceptual design level. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 1-6.

Hasanzadeh, A. et al. (2005). Optimum Design of Series Hybrid Electric Buses by Genetic Algorithm. Proceedings of the IEEE International Symposium on; Industrial Electronics, Bd. 4, 1465-1470.

Hegazy, O., & van Mierlo, J. (2010). Particle Swarm Optimization for optimal powertrain component sizing and design of fuel cell hybrid electric vehicle. 12th International Conference on : Optimation of Electrical and Electronic Equipment (OPTIM), 601-609.

Hofmann, P. (2010). Hybridfahrzeuge. Wien und New York: Springer Verlag.

Hrubel, M. H., Krainyk, L. V., & Khoma, V. V. (2020). Simulation of a move of wheeled military vehicles off road and assessment of their adequacy. Motorway of Ukraine, 2, 21-28.

Hrubel, M. H., & Krainyk, L. V. (2023). Maneuverability of military vehicles. Kyiv: PH “Profesional”.

Jain, M. et al. (2009). Genetic algorithm based optimal powertrain component sizing and control strategy design for a cell hybrid electric bus. Vehicle Power and Propulsion Conference, vPP09, IEEE, 980-985.

Kondratenko, O. P., & Dubyna, O. M. (2009). Assessment of energy parameters of a vehicle power unit with hybrid transmission at different speed. Weapon and military machinery, special means: Collection of scientific works of the Academy of Internal Affairs of the MIAU, 2 (14), 4-9.

Krainyk, L., Kikhtan, A., Kokhan, V., & Voloshchuk, M. (2022). Conceptual fundamentals of designing an all-terrain hybrid drive vehicle. Military technical collection of Hetman Petro Sahaidachnyi National Army Academy, 27, 10-18.

Krainyk, L., & Senyshak, M. (2021). Peculiarities of choosing the transfer numbers of an off-road vehicle transmission box. Problems of traffic flows and ways to solve them: Abstracts, March 25-26, 2021. Lviv: Published by Lviv Polytechnic, 105-106.

Krainyk, Yu. L., & Hula, O. I. (2015). Modeling the dynamics and energy of a cyclic move of a city bus with different types of drive. Dynamics, durability, and designing of vehicles and devices. Bulletin of Lviv Polytechnic National University, 177-180.

Le, Berr F. et al. (2012). Sensitivity Study on the Design Methodology of an Electric Vehicle. SAE Technical Paper Series.

Lifan, Liu et al. Combined Battery Design Optimization and Energy Management of Series Hybrid Military Truck. Retrieved from https://pangea.stanford.edu/ERE/pdf/jnjri PDF/Journals/32 pdf.

Lytvyn, O., Skliar, V., Sikaliuk, V., & Sakhno, D. (2019). Improvement of the electric component of electro bagi of double use. Technical sciences and technologies, 4 (19), 155-161.

Mayer, M. (2020). Analyse gesamtsystematischer Zusammenhaenge von hybriden Antriebsstrangkonzepten bezueglich kundenrelevanten Anforderungen. (Dissertation, Dr.-Ing.) TU Siegen.

Mittal, V., Novoselich, B., & Rodriguez, A. Hybridization of US Army Combat Vehicles. SAE Technical Paper 2022-01-0371. doi: 10.4271/2022-01-0371.

Moses, S. (2014). Optimierungstrategien fuer die Auslegung und Bewertung energieoptimalen Fahrzeugkonzepte. (Dissertaion, Dr.-Ing.) TU Berlin.

Patent US No 20170355259A1. (2017). Hybrid Utility Vehicles, Jun. 5, 2017.

Patil, R. et al. (2010). Design Optimization of a Series Plug-in hybrid Eletric Vehicle for Real-world driving conditions. SAE International Journ Engines, 3.1, 655-665.

Pischinger, S., & Seibel, J. (2007). Optimierte Auslegung von Ottomotoren in Hybrid-Antriebsstraengen. ATZ – Automobiltechnische Zeitschrift, 7, 36-41.

Reif, K. (2010). Konventionrller Antriebsstrang und Hybridantriebe: mit Brennstoffzellen und alternativen Kraftstoffen. Vieweg+Teubner Verlag.

Reif, K., & Noreikat, K. E. (2012). Kraffahrzeug-Hybridantriebe: Grundlage, Komponenten Systeme, Anwendungen. ATZ/MTZ-Fachbuch. Vieweg Verlag.

Ribau, J. P. et al. (2012). Plug-in hybrid vehicle powertrain design optyimization: energy consumption and cost. FISITA World Auomotive Congress. FISITA-Paper.

Sarioglu, L. (2013). Conceptual Design of Fuel-сell Vehicle Powertrains. (Dissertation). TU Braunschweig.

Velordocchia, M., & Rondinelli, E. (2010). Design and Development of Motors Hybrid Vehicle for Military Applications. SAE Technical Paper, 01-0659. Retrieved from www. sae.org> publications>technical papers>2010-01-01659.

Weiss, F. (2017). Optimale Konzeptauslegung elektrifizierter Fahrzeugantriebsstraenge. (Dissertation). TU Chemnitz, AutoUni-Schriftenreihe, Bd.122, Springer Verlag.

Wong, Y. J. (1993). Theory of ground vehicle. London; New-York: Mc-Graw Hill Book Co.

Zoelch, U. (1998). Ein Beitrag zu optimaler Auslegung und Betrieb von Hybridfahrzeugen. Berichte aus der Fahrzeugtechnik, Shaker Verlag.

Published

2024-01-19

How to Cite

Krainyk Л., Kikhtan А., Habriiel Ю., & Uzhva А. (2024). Methodology of determining the basic parameters of all-terrain hybrid vehicles. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (27), 27–34. https://doi.org/10.31734/agroengineering2023.27.027

Issue

Section

TECHNOLOGICAL PROCESSES AND EFFICIENT MACHINE USE IN AGRO ENGINEERING