Mobility and controllability of off-road vehicle movement: formation of a regulatory framework

Authors

  • T. Krainyk Lviv National Environmental University

Keywords:

cars, off-road, suspension and steering kinematics, mobility, controllability, regulatory requirements

Abstract

A review and analysis of the methods and regulatory frameworks used by advanced countries concerning the requirements and evaluation of vehicle mobility – specifically maximum movement speeds and controllability - has been conducted. This assessment primarily focuses on military vehicles (MVs), while vehicles used in agriculture and forestry, such as dump trucks and timber trucks, are often modified forms of these all-wheel-drive MVs. One critical requirement in this field is compliance with agroecological standards, particularly regarding the permissible pressure exerted by tires on the soil, depending on agroecological conditions. Variations in the heights of off-road obstacles create specific demands for the suspension systems and steering kinematics, thereby affecting the controllability and stability of the vehicles. The greater amplitudes of suspension movement encountered off-road require the development of corresponding kinematics in the steering system, particularly under maximum alignment conditions. High-speed driving on unpaved surfaces is constrained by acceptable vibration loads on the driver, which differ significantly from those experienced on paved roads.

This study also developed a method for experimentally evaluating the mobility of off-road vehicles, along with proposals for establishing a national regulatory framework that aligns with the UN/ECE rules for the certification of vehicles intended for operation on paved roads.

References

Belgian block road sample of Daimler durability test track. URL: http://maps.google.com/maps?&q=48.7860,9.

BS 6841 Guide to measurement and evalution of human exposure to wheel body mechanical vibration and supeated shok (1978). The British Standardinstitution. Londоn, 18.

Burian, M.W. (2020). Plavnist ruchu autobusiv u vzaiemozwiazku z kharakterystykamy pidvisky ta sydin. Dys. Kand. Techn. Nauk, NU “Lwiwska politekhnika. Lviv, 151.

DEF STAN 23-6. (2000). Guide to the Common Technical Requirements for Military Logistic Vehicles and Towed Equipment. Ed., 3. 68.

DSN 3.3.6.029 – 99. (2000). Derzavni sanitarni normy vyrobnychoi zahalnoi ta lokalnoi vibratsii. Kyiv: MOZ Ukrainy, 39.

DSTU – 3310-96. (1996). Zasoby transportni dorozhni. Stiikist. Metody vyznachennia osnovnykh parametriv vyprobuvanniam. Kyiv: Derzhstandart, 10.

DSTU – ISO 3888-1:2014. (2014). Avtomobili lehkovi pasazhyrski. Vyprobuvalnyi shliakh dlia rvuchkoho zminennia smuhy rukhu. Chastyna 1. Podviina zmina smuhy rukhu. Kyiv: Derzhspozhyvstandart, 16.

DSTU 4428:2005. (2005). Tekhnika silskohospodarska mobilna. Metody vyznachennia dii khodovykh system na hrunt. Kyiv: Derzhspozyvstandart, 10.

DSTU 4521:2006. (2006). Tekhnika silskohospodarska mobilna. Normy dii khodovyck system na hrunt. Kyiv: Derzhspozhyvstandart, 8.

DSTU 4977:2008. (2008). Tekhnika silskohospodarska mobilna. Metody vyznachennia maksymalnoho napruzhennia v hrunti pid diieiu khodovykh system. Kyiv: Derzhspozhyvstandart, 10.

DSTU 5096:2008. (2008). Yakist hruntu. Vyznachennia tverdosti hruntu tverdomirom Reiakina. Kyiv: Derzhspozhyvstandart, 8.

DSTU ISO 2631 -1:2004. (2004). Vibratsiia ta udar mekhanichnyi. Otsinka vplyvu zahalnoi vibratsii na liudynu. Kyiv: Derzhstandart Ukrainy, 36.

Els, P.S. (2006). The ride comfort vs. handling compromise for off-road vehicles. Diss. Dr.-Phil. Mech. Eng., University of Pretoria, 255.

Gimmler, H., Ammon, D., Rauh, J. (2005). Road Profiles: Mobile Measurement, Data Processing for Efficient Simulation and Assessment of Road Properties, VDI-Report No 1912, Düsseldorf(Germany), pp. 335–352.

GOST R 52302 – 2004. (2005). Avtotransportnyje sredstva. Upravliaemost i ustoychivost. Tekhnicheskie trebovania. Metody i ispytania. Moskwa, IPK Izd. Standarow, 31.

GOST RW 52048-2003. (2003). Avtomobili mnohotselevoho naznachenia. Parametry prokhodimosti i metody ich opredelenia. Moskwa, 11.

GOST W SSSR 26442-85. (1983). Avtomobili mnohotselevoho naznachenia. Parametry prokhodimosti i metody ich opredelenia. Moskwa, 9.

Hrubel, M. H., Krainyk, L. V. (2023). Prokhidnist viiskovykh avtomobiliv: monohrafia. Kyiv: Profesional, 182.

ISO 22476-1:2012. Geotechnical investignation and testing. Field testing. Part 1: Electrical cone and piezocone penetration test.

Ivanyshyn, V. V., Rud, A. V., Moshenko, I. O. (2017). Vyznachennia pereushchinlnennia hruntu u hospodarsvakh zakhidnoi chastyny lisostepu Ukrainy. Podisky visnyk: silske hospodarstvo, tekhnika, ekonomika. Vyp. 27, Podilsky DATU, 146-158.

Kaidalov, R. O., Bashtovoi, V. M., Larin, O. O., Vodka, O. O., Barkalov, V. H. (2016). Matematychne modeliuvannia kolyvan spetsializovanoho transportnoho zasobu z dvorivnevoiu systemoiu pidresoruvannia pry pereizdi odynychnoi dorozhnoi nerivnosti / Systemy ozbroiennia i viiskovoi tekhniky, 3 (47), 14-21.

Krainyk, L. V., Burian, M. H., Lanets, O. W., Kochan, V. F. (2022). Plavnist rukhu yak osnova komfortnosti avtomobiliv: formuvannia normatyvnoi bazy “vehicle road comfort”. Avtoshliakhovyk Ukrainy, 3, 2–8.

Krainyk, T. (2016). Onovlennia normatyvnoi bazy otsinky stiikosti ta kerovanosti rukhu avtomobiliv. Druha vseukrainska naukovo-praktychna konferentsiia “Avtobusobuduvannia ta pasazhyrski perevezennia v Ukraini”: tezy dopovidei. Lviv: Vyd. Lvivskoi politekhniky, 61.

Lanets, O., Sapuzhak, A., Kraynyk, T., Kovalyshyn, S. (2024). Development of structures and basis of structural synthrsis of independent suspensions of off-road vehicles. TEKA, 24, 1. Rzeszow-Lviv.

Manziak, M., Khoma, V., Hrubel, M., Krainyk, L., Salo, Ya. (2023). Otsinka efektyvnosti pidvisky povnopryvidnoho avtomobilia dlia bezdorizhzhia. Visnyk LNUP. Seria „Ahroinzhenerni doslidzhennia“, 27, 96-100.

Mekhanichnyi vplyv – Arduino.ua / https://arduino.ua / cat147 – mechanicheskie-vozdejstvija

Next-Generation NATO Reference Mobility Model (NG-NRMM) Development. STO-TR-AVT-248. NATO Science and Technology Organisation. Web site. URL: http://surl.li/hmflm.

Rebrov, O. Yu. (2018). Rozpodil dopustymoho tysku na hrunt khodovych system kolisnykh traktoriv za terytoriieiu Ukrainy. Visnyk NTU “KhPI”. Seriia “Matematychne modeliuvannia v tekhnitsi ta tekhnolohiiakh”, 27, 110-116.

Richter, R., Hoffmann, B. (1981). Probleme des Einsatzes von Fahrzeugen auf landwirtschaftlich genutzten Boden. Agrartechnik, 31 (9), 419-421.

Standard for Ground Vehicle Mobility. (2005). US Army Corps of Eng. ERDC/GSL TR-05-2. 116.

Wielenberg, A. (2014). Entwurf mechatronischer Fahrzeugfederungen am Beispiel eines gelaendegaengigen Nutzfahrzeugs. Diss. Dr.-Ing., Univers. Padeborn. BRD, 172.

Wong, Y. J. (2010). Terramechanics and off road vehicle engineering. Secоnd Ed. / Butterworth. London,

Published

2025-02-23

How to Cite

Krainyk Т. (2025). Mobility and controllability of off-road vehicle movement: formation of a regulatory framework. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (28), 83–89. Retrieved from https://visnyk.lnau.edu.ua/index.php/agroengineering/article/view/380

Issue

Section

TECHNOLOGICAL PROCESSES AND EFFICIENT MACHINE USE IN AGRO ENGINEERING