COMPARISON OF THE ENERGY SAVINGS OF HOUSEHOLD ELECTRICITY SUPPLY SYSTEMS

Authors

  • O. Miroshnyk Kharkiv National Technical University of Agriculture. P. Vasylenko

DOI:

https://doi.org/10.31734/agroengineering2019.23.100

Keywords:

power supply system, electricity losses, modeling of network modes

Abstract

The electricity supplied by the energy supplying organizations to the consumers  under  the  contracts  acts  as  a  commodity  of  a special  kind, is characterized by the coincidence in time of the processes of production, transportation  and  consumption,  as  well  as  the  impossibility  of  its  storage  and  return. Accordingly, the concept of "quality" is applied to electricity, as for any type of product. Deviation of electricity quality indicators from the set standards exacerbates  the  operating  conditions  of  electrical  installations  of  both  the  network  and  consumers.

The analysis of scientific works, devoted to the problems of combating low-quality electricity in 0,38 / 0,22 kV power systems, shows that there are many methods and techniques  available  today  to  improve  quality  indicators and reduce electricity losses, but  all  because  of  its  high  cost,  low  reliability  and  efficiency are  not  widespread  in  the long utility lines. Therefore, the lack of a comprehensive approach  to  solution of  the  problem of  electricity quality did not allow developing of objective recommendations on  methods  and  technical  means to reduce electricity  losses.

Therefore, a comprehensive analysis of all  factors  that  affect  the  energy  savings  and  quality  of  electricity  in  power  systems  0,38 / 0,22 kV will  solve this problem and  recommend cost-effective measures to reduce electricity losses. In  this  regard, it  is  necessary  to  design  and  build  more  energy  efficient power systems, which would  have  several advantages over the existing power system, in which there is significant asymmetry of currents and voltages and significant losses of electricity.

References

Burbelo, M. Y., Melnichuk, C. M., & Nikitenko, M. V. (2011). Vymiriuvannia parametriv nesymetrichnykh shvydkozminnykh tryfaznykh navantazhen. Tehnichna elektrodinamika, 2, 54–56.

Denisiuk, S. P., & Horenko, D. S. (2016). Obminni protsesi v tryfaznykh avtonomnykh systemakh elektrozhyvlennia. Pratsi Institutu elektrodinamiki NAN Ukraiiny, 45, 9–15.

Miroshnyk, O. O., Dovhopola, A. S., Hlushach, E. V., & Romanenko, Ya. A. (2018). Doslidzhennia enerhooshchadnykh rezhymiv roboty rozpodilnykh merezh. Visnik HNTUSG im. P. Vasilenka «Problemy enerhozabezpechennia ta enerhozberezhennia v APK Ukraiini», 196, 24–26.

DSTU IEC 61000-4-30-2010. Elektromahnitna sumisnist (EMC). Ch. 4-30: Metodyky viprobuvannia ta vimiriuvannia. Vymiriuvanniya pokaznikiv yakosti elektrichnoii enerhii. [Chynnyi vid 2012-07-01]. Vyd. ofits. Kyiv. (2010).

Miroshnyk, O. O. (2011). Statystichne doslidzhennia osnovnykh parametriv silskykh merezh 0,38/0,22 kV. Naukovyi visnik Natsionalnohgo universitetu bioresursiv i prirodokoristuvannia Ukraiini. Seriia «Tekhnika ta enerhetika APK», 166(4), 203–211.

Bollen, M. H. J. (2002). Definitions of Voltage Unbalance. IEEE Power Engineering Review, 1, 49–50. doi: https://doi.org/10.1109/MPER.2002.1045567.

Chen, T.-N., & Cherng, J.-T. (2000). Optimal Phase Arrangement of Distribution Transformers Connected to a Primary Feeder for System Unbalance Improvement and Loss Reduction using a Genetic Algorithm. IEEE Transactions on Power Systems, 15, 994–1000. doi: https://doi.org/10.1109/59.871724.

Chitra, R., & Neelaveni, R. (2011). A Realistic Approach for Reduction of Energy Losses in Low Voltage Distribution Network. International Journal of Electrical Power & Energy Systems, 33, 377–384. doi: https://doi.org/10.1016/j.ijepes.2010.08.033.

Dilek, M., Broadwater, R. P., Thompson, J. C., & Sequin, R. (2001). Simultaneous Phase Balancing at Substations and Switches with Time-Varying Load Patterns. IEEE Transactions on Power Systems, 16, 922–928. doi: https://doi.org/10.1109/59.962447.

Faiz, J., & Ebrahimpour, H. (2006). Influence of Unbalanced Voltage Supple on Ef-ficiency of Three Phase Squirrel Cage Induction Motor and Economic Analysis. IEEE Transactions on Energy Conversion, 47, 289–302. doi: https://doi.org/10.1016/j.enconman.2005.04.009.

Faiz, J., & Ebrahimpour, H. (2007). Precise Derating of Three-Phase Induction Motors with Unbalanced Voltages. Energy Conversion and Management, 48, 2579–2586. doi: https://doi.org/10.1016/j.enconman.2007.03.023.

IEEE Standard, «Definition for the measurement of Electric Power Quantities under sinusoidal, nousinusoidal, balanced or unbalanced conditions» (IEEE std. 1459ТМ – 2010), IEEE Power and Energy Society, New York. (2010).

Jouanne, A., & Banerjee, B. (2001). Assessment of Voltage Unbalance. IEEE Transactions on Power Delivery, 16, 782–790. doi: https://doi.org/10.1109/61.956770.

Miroshnyk, O. O., & Tymchuk, S. O. (2013). Uniform distribution of loads in the electric system 0.38/0.22 kV using genetic algorithms. Technical Electrodynamics, 4, 67–73. Retrieved from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84885913005&partnerID=MN8TOARS.

Verma, S., & Kumar, P. (2012). Smart Grid, Its Power Quality and Electromagnetic Compatibility. Islam, MIT International Journal of Electrical and Instrumentation Engineering, 1, 55–64.

Published

2019-12-01

How to Cite

Miroshnyk О. (2019). COMPARISON OF THE ENERGY SAVINGS OF HOUSEHOLD ELECTRICITY SUPPLY SYSTEMS. Bulletin of Lviv National Environmental University. Series Agroengineering Research, (23), 100–105. https://doi.org/10.31734/agroengineering2019.23.100

Issue

Section

ELECTROTECHNICAL COMPLEXES AND SYSTEMS IN AGRO INDUSTRIAL PRODUCTION