Measuring temperature in a round plate with multilayer coatings
DOI:
https://doi.org/10.31734/agroengineering2021.25.120Keywords:
temperature, thermal conductivity, shell with multilayer coatings, round plate, anti-corrosion double-sided double-ply coatingAbstract
A long-term trouble-free operation of gas turbines significantly depends on the material’s ability to operate at high temperatures and the effects of aggressive pressure and combustion products. The value of this temperature, depending on the type of turbine is within the range of 960–1300 °C, whereas in other types of turbines, it is higher. Using the basis, new alloys, composite and other materials are developed, as well as the technology to increase the stability and heat resistance of gas turbine parts during formation of surface layers with appropriate physical and mechanical properties.
However, the most effective and broadest way to ensure the safety and corrosion resistance of structural elements of the general path of gas turbine engines is to apply surface coatings.
A mathematical model for a shell of arbitrary shape with one-sided and two-sided multilayer thin coatings, the surfaces of which are in contact with external environments of different temperatures, is constructed. Using the operator method, solutions of the three-dimensional problem of thermal conductivity of the coated shell are reduced to a system of two differential equations for the integral characteristics of the temperature. The exact solutions of stationary and nonstationary thermal conductivity problems for a round plate and a disk with bilateral thin multilayer coatings are obtained in a closed form.
The calculations were performed for a solid round plate. From the presented results of calculations of the temperature of a plate, it is observed that neglecting coverings results in overestimates of the design temperature approximately by 100 °C. From distribution of stresses, an opposite picture is marked. Consideration of coatings provides for reduction of the values of stressed by about 70 MPa to the center of the plate, as well as to the center and to the edge of the plate.
References
Attetkov, A. V. (2006). Temperaturnoe pole tverdogo tela, soderzhashchego tsilindricheskyi kanal s mnogosloinyim pokryitiem ego poverkhnosti, v usloviyakh nestatsyionarnogo teploobmena. Vestnik MHTU im. N. E. Baumana. Seriya: Mashinostroeniye, (3), 37–50. [in Russian].
Berman, R. (1979). Teploprovodnost tverdyikh tel. Moskva: Myr. [in Russian].
Veinik, A. Y. (1959). Priblizhennyi raschet protsessov teploprovodnosti. Moskva: Gosenergoizdat. [in Russian].
Karslou, H., & Eger, D. (1964). Teploprovodnost tverdyikh tel. Moskva: Nauka. [in Russian].
Lyikov, A. V. (1967). Teoriya teploprovodnosti. Moskva: Vyissh. shk. [in Russian].
Maksymuk, O., & Shcherbyna, Ya. (2002). Vplyv zakhysnoho pokryttia na teplovyi rezhym obmezhenykh obiemiv. Visnyk Lvivskoho universytetu. Seriia: Prykladna matematyka ta informatyka, 4, 126–130. [in Ukrainian].
Novatskii, V. (1966). Obzor rabot po dinamicheskim problemam termouprugosti. Mekhanika: Sb. perevodov, 6(100) (pp. 101–142). Moskva. [in Russian].
Pidstryhach, Ya. S., & Yarema, S. Ya. (1961). Temperaturni napruzhennia v obolonkakh. Kyiv: Vyd-vo AN URSR. [in Ukrainian].
Podstrigach, Ya. S., & Koliano, Yu. M. (1972). Neustanovivshyiesia temperaturnyie polia i napriazheniia v tonkikh plastinkakh. Kyev: Nauk. dumka. [in Russian].
Podstrigach, Ya. S., & Chernukha, Yu. A. (1975). Ob uravneniiakh teploprovodnosti dlia tonkostennyikh elementov konstruktsii. Teoriya plastin i obolochek: Tr. IX Vsesoiuznoi konf. po teoryy obolochek i plastin (pp. 82–85). Leningrad. [in Russian].
Semerak, V. M., & Kosarchyn, V. I. (2014). Termonapruzhenyi stan v okoli lokalnoi dilianky fryktsiinoho kontaktu. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: Ahroinzhenerni doslidzhennia, 18, 271–275. [in Ukrainian].
Shevchuk, V. A. (2011). Nestatsionarna odnovymirna zadacha teploprovidnosti dlia tsylindra z tonkym bahatosharovym pokryttiam. Matematychni metody ta fizyko-mekhanichni polia, 2, 179–185. [in Ukrainian].
Attetkov, A. V., & Belyakov, N. S. (2006). The temperature field of an infinite solid containing a cylindrical channel with a thermally thin surface coating. High Temperature, 44 (1), 139–143.
Ionescu-Cazimir, V. (1963). Theoreme de reciprocitate pentru problema dinamica a termo-elasticitii. An. Univ. Bucuresti. Ser. stiint. Natur., 12 (39), 93–100.
Zorski, H. (1958). On certain property of thermoelastic media. Bull. Acad, pol. sci. Ser. sci. techn., 6 (6), 331–339.