HOW THE CONTROLLED SYNERGY OF RHIZOSPHERIC MICROORGANISMS CAN IMPROVE EFFICIENCY OF MODERN AGRICULTURE (BACK TO NATURE)
DOI:
https://doi.org/10.31734/agronomy2023.27.157Keywords:
biodiversity, rhizobiоme, soil, arbuscular fungi, sustainable agricultureAbstract
One of the main goals of sustainable intensification of agricultural production is to increase the content of organic matter in the soil by increasing the strength and diversity of soil microbiota. The rhizosphere is distinctly different from the soil far from the plant roots by its physical, chemical, and biological properties. The number of microorganisms in the rhizosphere can be ten times higher than the content of them in undeveloped soil. Microbial populations play an important role in the phase processes that ensure stability and productivity of agroecosystems. The role of the soil microbiome in regulating many processes in agroecosystems is insufficiently studied, which limits our ability to predict how the reduced soil biome diversity indirectly affects human welfare through agroecosystem resilience. The use of microorganisms has a great potential for sustainable agriculture, because such innovative methods in plant breeding technologies can replace traditional methods of growing agricultural crops. The soil microbiome is a critically important factor influencing the agroecosystem functioning, because microorganisms act as drivers of the circulation of nutrients, regulating the dynamics of labile organic matter in the soil, carbon deposition in the soil, greenhouse gas emissions, changing the physical structure and water regime of the soil, increasing the amount and efficiency of nutrients absorption by plants, prevent the invasion of pathogenic organisms and reduce the impact of biotic and abiotic stresses on the agricultural plants. The rhizosphere should be considered as a structural and functional unit of the agrosystem. Its vital activity determines realization of the genetic potential of varieties and hybrids, creates conditions for increasing their productivity when the soil activity is stimulated and environmental risks are reduced. The present review emphasizes importance of the soil microbiome diversity in maintaining healthy soils, because only such soils support efficient agricultural production.
References
Agnolucci M., Avio L., Palla M. et al. Health-promoting properties of plant products: the role of mycorrhizal fungi and associated bacteria. Agronomy 2020. No 10. https://doi.org/10.3390/agronomy10121864.
Akram M. S., Shahid M., Tariq M. et al. Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize (Zea mays L.). Front. Microbiol. 2016. № 7. 867. https://doi.org/10.3389/fmicb.2016.00867.
Altieri M. A. Agroecology the Science of Sustainable Agricultura, 2nd ed. CRC Press: Boca Raton, FL. USA. 2018. 448 р. https://doi.org/10.1201/9780429495465.
Avio L., Turrini A., Giovannetti M., Sbrana C. Designing the ideotype mycorrhizal symbionts for the production of healthy food. Front Plant Sci. 2018. No 9. https://doi.org/10.3389/fpls.2018.01089.
Backer R., Rokem J. S., Ilangumaran G. et al. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018. No. 9. 1473. https://doi.org/10.3389/fpls.2018.01473.
Barrow N., Lambers H. Phosphate-solubilising microorganisms mainly increase plant phosphate uptake by effects of pH on root physiology. Plant & Soil. 2022. No 476. Р. 397–402. https://doi.org/10.1007/s11104-021-05240-0.
Bender S. F., Wagg C., Van Der Heijden M. G. A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016. No. 31. Р. 440–452. https://doi.org/10.1016/j.tree.2016.02.016.
Berendsen R. L., Vismans G., Yu K. et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018. No 12. Р. 1496–1507. https://doi.org/10.1038/s41396-018-0093-1.
Bhatti A. A., Haq S., Bhat R. A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017. No. 111. Р. 458–467. https://doi.org/10.1016/j.micpath.2017.09.036.
Bitterlich M., Franken P., Graefe J. Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front Plant Sci. 2018. No. 9. https://doi.org/10.3389/fpls.2018.00301.
Bouizgarne B., Aouamar A. A. B. Diversity of Plant Associated Actinobacteria. Bacterial Diversity in Sustainable Agriculture 1st ed. Maheswari D. K., Ed.; Springer: Cham, Switzerland. 2014. Р. 41–99. https://doi.org/10.1007/978-3-319-05936-5_3.
Cappellari L. D. R., Chiappero, J., Santoro M. V et al. Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria. Sci. Hortic. 2017. No. 220. Р. 193–198. https://doi.org/10.1016/j.scienta.2017.04.002.
Delgado-Baquerizo M., Maestre F. T., Reich P. B. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications. 2016. No 7. Р. 1–8. https://doi.org/10.1038/ncomms10541.
Eyhorn F., Muller A., Reganold J. P. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2019. No. 2. Р. 253–255. https://doi.org/10.1038/s41893-019-0266-6.
Gianinazzi S., Gollotte A., Binet M. N. et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. 2010. No 20. Р. 519–530. https://doi.org/10.1007/s00572-010-0333-3.
Harvey P. R., Warren R. A., Wakelin S. Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere. Crop and Pasture Science. 2009. No 60. Р. 144–151. https://doi.org/10.1071/CP08084.
Hsu P.-C., Condron L. M., O'Callaghan et al. hemX is required for production of 2-ketogluconate, the predominant organic anion for inorganic phosphate solubilisation by Burkholderia sp. Ha185. Environmental Microbiology Reports. 2015 No 7. Р. 918–928. https://doi.org/10.1111/1758-2229.12326.
Isbell F., Craven D., Connolly J. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature. 2015. No 526. Р. 574–577. https://doi.org/10.1038/nature15374.
Kameoka H., Maeda T., Okuma N., Kawaguchi M. Structure-specific regulation of nutrient transport and metabolism in arbuscular mycorrhizal fungi. Plant Cell Physiol. 2019. No 60. Р. 2272–2281. https://doi.org/10.1093/pcp/pcz122.
Kandel S. L., Joubert P. M., Doty S. L. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms. 2017. No. 5. https://doi.org/10.3390/microorganisms5040077.
Nafady N. A., Hashem M., Hassan E. A. et al. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biol. Control. 2019. No. 138. https://doi.org/10.1016/j.biocontrol.2019.104049.
Piazza G., Pellegrino E., Moscatelli M. C., Ercoli L. Long-term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil Tillage Res. 2020. No 196. https://doi.org/10.1016/j.still.2019.104482 .
Rehman F., Pervez A., Khattak B. N., Ahmad R. Plant Growth Promoting Rhizobacteria Impact on Typha latifolia and Phragmites australis Growth and Dissolved Oxygen. CLEAN Soil Air Water. 2018. https://doi.org/10.1002/clen.201700353.
Sarabia M., Cazares S., González-Rodríguez A. et al Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems. Rhizosphere. 2018. No. 6. Р. 67–73. https://doi.org/10.1016/j.rhisph.2018.04.002.
Singh S., Tripathi A., Maji D. et al Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Ind. Crop. Prod. 2019. No 131. Р. 173–181. https://doi.org/10.1016/j.indcrop.2019.01.039.
Smith S. E., Read D. J. Mycorrhizal Symbiosis. Academic Press: Cambridge, MA, USA. 2010. ISBN 978-0-08-055934-6.
Spatafora J. W., Chang Y., Benny G. L. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016. No 108. Р. 1028–1046. https://doi.org/10.3852/16-042 .
Takishita Y., Charron J.-B., Smith D. L. Biocontrol Rhizobacterium Pseudomonas sp. 23S Induces Systemic Resistance in Tomato (Solanum lycopersicum L.) Against Bacterial Canker Clavibacter michiganensis subsp. michiganensis. Front. Microbiol. 2018. No 9. 2119. https://doi.org/10.3389/fmicb.2018.02119.
Tedersoo L., Sánchez-Ramírez S., Kõljalg U. et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018. No 90. Р. 135–159. https://doi.org/10.1007/s13225-018-0401-0.
Thirkell T. J., Charters M. D., Elliott A. J. et al. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology. 2017. No 105. Р. 921–929. https://doi.org/10.1111/1365-2745.12788.